Modelling and Design of Inverter Threshold Quantization based Current Comparator using Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
A Reference Generating Inverter-switching-threshold-voltage Based Current Comparator
A simple and novel design for a current comparator is proposed. The proposed current comparator utilizes the concept of adjustment of switching threshold voltage of an inverter employed in the circuit design to develop a reference current for the purpose of current comparison. The proposed circuit was simulated using 0.18 μm TSMC CMOS technology and satisfactory results were obtained.
متن کاملEfficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملEvaluation of the Effective Electrospinning Parameters Controlling Kefiran Nanofibers Diameter Using Modelling Artificial Neural Networks
Objective(s): This paper investigates the validity of Artificial Neural Networks (ANN) model in the prediction of electrospun kefiran nanofibers diameter using 4 effective parameters involved in electrospinning process. Polymer concentration, applied voltage, flow rate and nozzle to collector distance were used as variable parameters to design various sets of electrospinning ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical and Computer Engineering (IJECE)
سال: 2016
ISSN: 2088-8708,2088-8708
DOI: 10.11591/ijece.v6i1.pp320-329